Introduction
Data with imbalanced target class occurs frequently in several domians such as credit card Fraud Detection ,insurance claim prediction, email spam detection, anomaly detection, outlier detection etc. Financial instituions loose millions of dollars every year to fraudulent financial transactions. It is important that these institutions are able to identify fraud to protect their customers and also reduce the financial losses that comes from fraudsters.
The goal here is to predict fraudulent transactions to minimize loss to financial companies. For machine learning data with imbalanced target clases, the model evaluation metric is the AUC, the area under the ROC curve and the area under the precision-recall curve. The accuaracy metric is not useful in these situations since usually the proportion of the positive class in these situations is so low that even a naive classifier that predicts all transactions as fraudulent would result in a high accuracy. For example the dataset considered here, the proportion of negative examples is over 99% this a naive classifier can predict all transactions as legitimate and would be over 99% accuarate.
The following packages that is been installed here will be neccessary for some of the analysis later on this project.
!pip uninstall scikit-learn # until no more scikit-learn is present
!pip install scikit-learn
!pip install scikit-optimize
!pip install skll
!pip install imbalanced-learn
!pip install eli5
!pip install scipy
!pip install scikit-optimize
# activate R magic to run R in google colab notebook
import rpy2
%load_ext rpy2.ipython
#%%R
#install.packages("MLmetrics")
#install.packages("yardstick")
#install.packages("mltools")
#install.packages("glue")
%tensorflow_version 2.x
import numpy as np
import pandas as pd
import io
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns; sns.set(style="ticks", color_codes=True)
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.feature_selection import chi2
from sklearn.linear_model import LogisticRegression
from sklearn import feature_selection
#from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.metrics import make_scorer
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_validate
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from xgboost import XGBClassifier
from sklearn.impute import SimpleImputer
import xgboost as xgb
import lightgbm as lgb
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import svm
from skopt.space import Real, Categorical, Integer
#from skll.metrics import spearman
from scipy.stats import kendalltau, spearmanr, pearsonr
from skopt import BayesSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.metrics import make_scorer
from skopt.space import Real, Categorical, Integer
from sklearn.metrics import classification_report
from sklearn.base import TransformerMixin
from sklearn.metrics import classification_report, f1_score, accuracy_score, precision_score, confusion_matrix
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve
pd.set_option('display.max_rows', 600)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
import warnings
import pandas_profiling
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.pipeline import make_pipeline, FeatureUnion, Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import GridSearchCV
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.metrics import roc_curve, roc_auc_score,balanced_accuracy_score
from sklearn.svm import SVC
import random
import matplotlib.pyplot as plt
import seaborn as sns
import re
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer, make_column_transformer
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import *
from sklearn.utils import resample
from imblearn.over_sampling import SMOTE
#import smote
import os
from sklearn.tree import DecisionTreeClassifier
from imblearn.metrics import geometric_mean_score as gmean
from imblearn.metrics import make_index_balanced_accuracy as iba
from imblearn.metrics import *
from eli5.sklearn import PermutationImportance
from eli5.sklearn import *
import eli5
from eli5.permutation_importance import get_score_importances
#import rus
# Skopt functions
from skopt import BayesSearchCV
from skopt import gp_minimize # Bayesian optimization using Gaussian Processes
from skopt.space import Real, Categorical, Integer
from skopt.utils import use_named_args # decorator to convert a list of parameters to named arguments
from skopt.callbacks import DeadlineStopper # Stop the optimization before running out of a fixed budget of time.
from skopt.callbacks import VerboseCallback # Callback to control the verbosity
from skopt.callbacks import DeltaXStopper # Stop the optimization If the last two positions at which the objective has been evaluated are less than delta
from joblib import dump, load
from prettytable import PrettyTable
from collections import Counter
from sklearn.datasets import make_classification
from imblearn.under_sampling import RandomUnderSampler # doctest: +NORMALIZE_WHITESPACE
from imblearn import under_sampling, over_sampling
from imblearn.over_sampling import SMOTE
import tensorflow as tf
warnings.filterwarnings("ignore")
%matplotlib inline
#specify tensorflow version to use
%tensorflow_version 2.x
#load tensorboard
#%load_ext tensorboard
#%tensorboard --logdir logs
%autosave 5
Autosaving every 5 seconds
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
Description of Data.
The datasets can be found on kaggle.The link to it is here.
The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly imbalanced, the positive class (frauds) account for 0.172% of all transactions.
It contains only numerical input variables which are the result of a PCA transformation. This was done to preserve the identity and privacy of the people whose transaction this data was gathered from. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are ‘Time’ and ‘Amount’. Feature ‘Time’ contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature ‘Amount’ is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature ‘Class’ is the response variable and it takes value 1 in case of fraud and 0 otherwise.
file = tf.keras.utils
df = pd.read_csv('https://storage.googleapis.com/download.tensorflow.org/data/creditcard.csv')
df.head()
|
Time |
V1 |
V2 |
V3 |
V4 |
V5 |
V6 |
V7 |
V8 |
V9 |
V10 |
V11 |
V12 |
V13 |
V14 |
V15 |
V16 |
V17 |
V18 |
V19 |
V20 |
V21 |
V22 |
V23 |
V24 |
V25 |
V26 |
V27 |
V28 |
Amount |
Class |
0 |
0.0 |
-1.359807 |
-0.072781 |
2.536347 |
1.378155 |
-0.338321 |
0.462388 |
0.239599 |
0.098698 |
0.363787 |
0.090794 |
-0.551600 |
-0.617801 |
-0.991390 |
-0.311169 |
1.468177 |
-0.470401 |
0.207971 |
0.025791 |
0.403993 |
0.251412 |
-0.018307 |
0.277838 |
-0.110474 |
0.066928 |
0.128539 |
-0.189115 |
0.133558 |
-0.021053 |
149.62 |
0 |
1 |
0.0 |
1.191857 |
0.266151 |
0.166480 |
0.448154 |
0.060018 |
-0.082361 |
-0.078803 |
0.085102 |
-0.255425 |
-0.166974 |
1.612727 |
1.065235 |
0.489095 |
-0.143772 |
0.635558 |
0.463917 |
-0.114805 |
-0.183361 |
-0.145783 |
-0.069083 |
-0.225775 |
-0.638672 |
0.101288 |
-0.339846 |
0.167170 |
0.125895 |
-0.008983 |
0.014724 |
2.69 |
0 |
2 |
1.0 |
-1.358354 |
-1.340163 |
1.773209 |
0.379780 |
-0.503198 |
1.800499 |
0.791461 |
0.247676 |
-1.514654 |
0.207643 |
0.624501 |
0.066084 |
0.717293 |
-0.165946 |
2.345865 |
-2.890083 |
1.109969 |
-0.121359 |
-2.261857 |
0.524980 |
0.247998 |
0.771679 |
0.909412 |
-0.689281 |
-0.327642 |
-0.139097 |
-0.055353 |
-0.059752 |
378.66 |
0 |
3 |
1.0 |
-0.966272 |
-0.185226 |
1.792993 |
-0.863291 |
-0.010309 |
1.247203 |
0.237609 |
0.377436 |
-1.387024 |
-0.054952 |
-0.226487 |
0.178228 |
0.507757 |
-0.287924 |
-0.631418 |
-1.059647 |
-0.684093 |
1.965775 |
-1.232622 |
-0.208038 |
-0.108300 |
0.005274 |
-0.190321 |
-1.175575 |
0.647376 |
-0.221929 |
0.062723 |
0.061458 |
123.50 |
0 |
4 |
2.0 |
-1.158233 |
0.877737 |
1.548718 |
0.403034 |
-0.407193 |
0.095921 |
0.592941 |
-0.270533 |
0.817739 |
0.753074 |
-0.822843 |
0.538196 |
1.345852 |
-1.119670 |
0.175121 |
-0.451449 |
-0.237033 |
-0.038195 |
0.803487 |
0.408542 |
-0.009431 |
0.798278 |
-0.137458 |
0.141267 |
-0.206010 |
0.502292 |
0.219422 |
0.215153 |
69.99 |
0 |
df[['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V26', 'V27', 'V28', 'Amount', 'Class']].describe().transpose()
|
count |
mean |
std |
min |
25% |
50% |
75% |
max |
Time |
284807.0 |
9.481386e+04 |
47488.145955 |
0.000000 |
54201.500000 |
84692.000000 |
139320.500000 |
172792.000000 |
V1 |
284807.0 |
3.919560e-15 |
1.958696 |
-56.407510 |
-0.920373 |
0.018109 |
1.315642 |
2.454930 |
V2 |
284807.0 |
5.688174e-16 |
1.651309 |
-72.715728 |
-0.598550 |
0.065486 |
0.803724 |
22.057729 |
V3 |
284807.0 |
-8.769071e-15 |
1.516255 |
-48.325589 |
-0.890365 |
0.179846 |
1.027196 |
9.382558 |
V4 |
284807.0 |
2.782312e-15 |
1.415869 |
-5.683171 |
-0.848640 |
-0.019847 |
0.743341 |
16.875344 |
V5 |
284807.0 |
-1.552563e-15 |
1.380247 |
-113.743307 |
-0.691597 |
-0.054336 |
0.611926 |
34.801666 |
V26 |
284807.0 |
1.699104e-15 |
0.482227 |
-2.604551 |
-0.326984 |
-0.052139 |
0.240952 |
3.517346 |
V27 |
284807.0 |
-3.660161e-16 |
0.403632 |
-22.565679 |
-0.070840 |
0.001342 |
0.091045 |
31.612198 |
V28 |
284807.0 |
-1.206049e-16 |
0.330083 |
-15.430084 |
-0.052960 |
0.011244 |
0.078280 |
33.847808 |
Amount |
284807.0 |
8.834962e+01 |
250.120109 |
0.000000 |
5.600000 |
22.000000 |
77.165000 |
25691.160000 |
Class |
284807.0 |
1.727486e-03 |
0.041527 |
0.000000 |
0.000000 |
0.000000 |
0.000000 |
1.000000 |
We can see the target class is highly imbalanced. The minority classis about 0.17% of the target exampes.
df['Class'].value_counts(normalize=True)*100
0 99.827251
1 0.172749
Name: Class, dtype: float64
neg, pos = df.Class.value_counts()
total = neg + pos
print('Examples:\n Total: {}\n Positive: {} ({:.2f}% of total)\n '.format(
total, pos, 100 * pos / total,100 * neg / total))
print('Total: {}\n Negative: {} ({:.2f}% of total)\n '.format(
total, neg, 100 * neg / total))
Examples:
Total: 284807
Positive: 492 (0.17% of total)
Total: 284807
Negative: 284315 (99.83% of total)
#x = raw_df.drop(['Time'],axis=1)
# Use a utility from sklearn to split and shuffle our dataset.
train_df, test_df = train_test_split(df, test_size=0.2)
#train_df, val_df = train_test_split(train_df, test_size=0.2)
train_x =train_df.drop(['Time','Class'],axis=1)
test_x = test_df.drop(['Time','Class'],axis=1)
#val_x = val_df.drop(['Time'],axis=1)
train_y= train_df.Class
test_y = test_df.Class
#val_y = val_df.Class
print('Traing dataset size:{}'.format(train_x.shape))
print('Test dataset size:{}'.format(test_x.shape))
#print('Validation dataset size: {}'.format(val_df.shape))
Traing dataset size:(227845, 29)
Test dataset size:(56962, 29)
#train_x.columns
#test_x.columns
test_y.isna().sum()
The first model considered here is the extreme gradient boosting algorithm. It is popular with modeling tabular data. The hyperparameters of the model would be set to default except the scale_pos_weight which would be tuned in the case of cost-sensitive xgboost to find the best weight that optimizes the model.The hyperparameter values is left to the default values to allow for a fair comparison among machine learning algorithms used in this analysis. The hyperparameter tuning is done by bayesian optimization using the scikit-optimize package.
# Setting a 5-fold stratified cross-validation (note: shuffle=True)
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
clf = xgb.XGBClassifier(
n_jobs = -1,
objective = 'binary:logistic',
silent=1,
tree_method='approx')
search_spaces = {
#'learning_rate': Real(0.01, 1.0, 'log-uniform'),
# 'min_child_weight': Integer(0, 10),
# 'max_depth': Integer(1, 50),
# 'max_delta_step': Integer(0, 20), # Maximum delta step we allow each leaf output
# 'subsample': Real(0.01, 1.0, 'uniform'),
# 'colsample_bytree': Real(0.01, 1.0, 'uniform'), # subsample ratio of columns by tree
# 'colsample_bylevel': Real(0.01, 1.0, 'uniform'), # subsample ratio by level in trees
#'reg_lambda': Real(1e-9, 1000, 'log-uniform'), # L2 regularization
#'reg_alpha': Real(1e-9, 1.0, 'log-uniform'), # L1 regularization
# 'gamma': Real(1e-9, 0.5, 'log-uniform'), # Minimum loss reduction for partition/pruning parameter
# 'n_estimators': Integer(50, 100),
'scale_pos_weight': Real(1e-6, 2000, 'log-uniform')
}
bayessearch = BayesSearchCV(clf,
search_spaces,
scoring='roc_auc', #f1
cv=skf,
n_iter=40,
n_jobs=-1,
return_train_score=False,
#refit=True,
optimizer_kwargs={'base_estimator': 'GP'},
random_state=22)
#xgbm_model = bayessearch.fit(X=train_x, y=train_y)
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
#share_link="https://drive.google.com/file/d/1mGzO4-vaTKVgH5zzzXCVcXNbj-Bt8u8g/view?usp=sharing"
import os
os.getcwd()
#!files.os.listdir()
Build Pandas -Profiling Report
The exploratory analysis of the features in the dataset can be automated with the Pandas -ProfilingReport package. It generates exploratory plots of the features in a dataset that is passed to it.
#Inline report without saving object
pandas_profiling.ProfileReport(df)
#Save report to file¶
pfr = pandas_profiling.ProfileReport(df)
pfr.to_file("/content/drive/My Drive/profilingReport2.html")
pfr
Dataset info
Number of variables |
31 |
Number of observations |
284807 |
Total Missing (%) |
0.0% |
Total size in memory |
67.4 MiB |
Average record size in memory |
248.0 B |
Variables types
Numeric |
30 |
Categorical |
0 |
Boolean |
1 |
Date |
0 |
Text (Unique) |
0 |
Rejected |
0 |
Unsupported |
0 |
Warnings
- Dataset has 1081 duplicate rows Warning
Distinct count |
124592 |
Unique (%) |
43.7% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
94814 |
Minimum |
0 |
Maximum |
172790 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
0 |
5-th percentile |
25298 |
Q1 |
54202 |
Median |
84692 |
Q3 |
139320 |
95-th percentile |
164140 |
Maximum |
172790 |
Range |
172790 |
Interquartile range |
85119 |
Descriptive statistics
Standard deviation |
47488 |
Coef of variation |
0.50086 |
Kurtosis |
-1.2935 |
Mean |
94814 |
MAD |
42796 |
Skewness |
-0.035568 |
Sum |
27004000000 |
Variance |
2255100000 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
163152.0 |
36 |
0.0% |
|
64947.0 |
26 |
0.0% |
|
68780.0 |
25 |
0.0% |
|
3767.0 |
21 |
0.0% |
|
3770.0 |
20 |
0.0% |
|
128860.0 |
19 |
0.0% |
|
19912.0 |
19 |
0.0% |
|
3750.0 |
19 |
0.0% |
|
140347.0 |
19 |
0.0% |
|
143083.0 |
18 |
0.0% |
|
Other values (124582) |
284585 |
99.9% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
0.0 |
2 |
0.0% |
|
1.0 |
2 |
0.0% |
|
2.0 |
2 |
0.0% |
|
4.0 |
1 |
0.0% |
|
7.0 |
2 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
172785.0 |
1 |
0.0% |
|
172786.0 |
1 |
0.0% |
|
172787.0 |
1 |
0.0% |
|
172788.0 |
2 |
0.0% |
|
172792.0 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
3.9196e-15 |
Minimum |
-56.408 |
Maximum |
2.4549 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-56.408 |
5-th percentile |
-2.8991 |
Q1 |
-0.92037 |
Median |
0.018109 |
Q3 |
1.3156 |
95-th percentile |
2.0812 |
Maximum |
2.4549 |
Range |
58.862 |
Interquartile range |
2.236 |
Descriptive statistics
Standard deviation |
1.9587 |
Coef of variation |
499720000000000 |
Kurtosis |
32.487 |
Mean |
3.9196e-15 |
MAD |
1.4116 |
Skewness |
-3.2807 |
Sum |
3.3208e-1 |
Variance |
3.8365 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
2.0557970063003896 |
77 |
0.0% |
|
1.24567381944824 |
77 |
0.0% |
|
2.0533112135278504 |
62 |
0.0% |
|
1.30237796508637 |
60 |
0.0% |
|
2.04021105776632 |
53 |
0.0% |
|
2.08517487552541 |
48 |
0.0% |
|
1.33284931179458 |
45 |
0.0% |
|
1.01841181981555 |
40 |
0.0% |
|
1.33505315377059 |
39 |
0.0% |
|
1.3154041716379299 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-56.407509631329 |
1 |
0.0% |
|
-46.85504720078179 |
1 |
0.0% |
|
-41.9287375244141 |
1 |
0.0% |
|
-40.4701418378475 |
1 |
0.0% |
|
-40.0425374953845 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
2.4305067805687406 |
1 |
0.0% |
|
2.43920748106102 |
1 |
0.0% |
|
2.44650498499596 |
1 |
0.0% |
|
2.4518884899535895 |
1 |
0.0% |
|
2.45492999121121 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
5.6882e-16 |
Minimum |
-72.716 |
Maximum |
22.058 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-72.716 |
5-th percentile |
-1.972 |
Q1 |
-0.59855 |
Median |
0.065486 |
Q3 |
0.80372 |
95-th percentile |
1.8086 |
Maximum |
22.058 |
Range |
94.773 |
Interquartile range |
1.4023 |
Descriptive statistics
Standard deviation |
1.6513 |
Coef of variation |
2903100000000000 |
Kurtosis |
95.773 |
Mean |
5.6882e-16 |
MAD |
0.97384 |
Skewness |
-4.6249 |
Sum |
9.7316e-11 |
Variance |
2.7268 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.166975019545401 |
77 |
0.0% |
|
-0.32666777306077005 |
77 |
0.0% |
|
0.08973464781763099 |
62 |
0.0% |
|
-0.606529308236609 |
60 |
0.0% |
|
-0.146974974784838 |
53 |
0.0% |
|
0.39305057772255 |
48 |
0.0% |
|
0.38919824918427603 |
45 |
0.0% |
|
1.03666300867632 |
40 |
0.0% |
|
0.331464026372479 |
39 |
0.0% |
|
0.44747360617094895 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-72.7157275629303 |
1 |
0.0% |
|
-63.3446983175027 |
1 |
0.0% |
|
-60.4646176556493 |
1 |
0.0% |
|
-50.3832691251379 |
1 |
0.0% |
|
-48.060856024869395 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
18.1836264596211 |
1 |
0.0% |
|
18.902452840124898 |
1 |
0.0% |
|
19.167239010306197 |
1 |
0.0% |
|
21.4672029942752 |
1 |
0.0% |
|
22.0577289904909 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-8.7691e-15 |
Minimum |
-48.326 |
Maximum |
9.3826 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-48.326 |
5-th percentile |
-2.3897 |
Q1 |
-0.89036 |
Median |
0.17985 |
Q3 |
1.0272 |
95-th percentile |
2.0626 |
Maximum |
9.3826 |
Range |
57.708 |
Interquartile range |
1.9176 |
Descriptive statistics
Standard deviation |
1.5163 |
Coef of variation |
-172910000000000 |
Kurtosis |
26.62 |
Mean |
-8.7691e-15 |
MAD |
1.1337 |
Skewness |
-2.2402 |
Sum |
-3.9108e-1 |
Variance |
2.299 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-2.75204095570008 |
77 |
0.0% |
|
0.488305742562781 |
77 |
0.0% |
|
-1.68183566862495 |
62 |
0.0% |
|
-0.681986192919261 |
60 |
0.0% |
|
-2.95593366483195 |
53 |
0.0% |
|
-4.50820053235418 |
48 |
0.0% |
|
-2.16559660467804 |
45 |
0.0% |
|
-1.6898137072248403 |
40 |
0.0% |
|
-2.05776277666682 |
39 |
0.0% |
|
-0.495757487926775 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-48.3255893623954 |
1 |
0.0% |
|
-33.6809840183525 |
1 |
0.0% |
|
-32.9653457595238 |
1 |
0.0% |
|
-32.45419818625469 |
1 |
0.0% |
|
-31.8135859546007 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
4.07916781154883 |
1 |
0.0% |
|
4.10171617761651 |
1 |
0.0% |
|
4.18781059904763 |
1 |
0.0% |
|
4.22610848028397 |
1 |
0.0% |
|
9.38255843282114 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
2.7823e-15 |
Minimum |
-5.6832 |
Maximum |
16.875 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-5.6832 |
5-th percentile |
-2.1957 |
Q1 |
-0.84864 |
Median |
-0.019847 |
Q3 |
0.74334 |
95-th percentile |
2.5665 |
Maximum |
16.875 |
Range |
22.559 |
Interquartile range |
1.592 |
Descriptive statistics
Standard deviation |
1.4159 |
Coef of variation |
508880000000000 |
Kurtosis |
2.6355 |
Mean |
2.7823e-15 |
MAD |
1.0603 |
Skewness |
0.67629 |
Sum |
5.9435e-1 |
Variance |
2.0047 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.842316033286871 |
77 |
0.0% |
|
0.6353219207244001 |
77 |
0.0% |
|
0.45421196023303295 |
62 |
0.0% |
|
-1.9046033962221203 |
60 |
0.0% |
|
-0.5783559788671391 |
53 |
0.0% |
|
-0.311770683288625 |
48 |
0.0% |
|
-0.306872623831362 |
45 |
0.0% |
|
1.31547583332268 |
40 |
0.0% |
|
-0.346175355279224 |
39 |
0.0% |
|
-0.557087388354872 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-5.68317119816995 |
1 |
0.0% |
|
-5.600607141215099 |
1 |
0.0% |
|
-5.56011758115594 |
1 |
0.0% |
|
-5.519697123284151 |
1 |
0.0% |
|
-5.416315392339291 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
13.1436680982574 |
1 |
0.0% |
|
15.3041839851875 |
1 |
0.0% |
|
16.4912171736623 |
1 |
0.0% |
|
16.7155373723131 |
1 |
0.0% |
|
16.8753440335975 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-1.5526e-15 |
Minimum |
-113.74 |
Maximum |
34.802 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-113.74 |
5-th percentile |
-1.702 |
Q1 |
-0.6916 |
Median |
-0.054336 |
Q3 |
0.61193 |
95-th percentile |
2.099 |
Maximum |
34.802 |
Range |
148.54 |
Interquartile range |
1.3035 |
Descriptive statistics
Standard deviation |
1.3802 |
Coef of variation |
-889010000000000 |
Kurtosis |
206.9 |
Mean |
-1.5526e-15 |
MAD |
0.89707 |
Skewness |
-2.4259 |
Sum |
2.7353e-1 |
Variance |
1.9051 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
2.46307225982454 |
77 |
0.0% |
|
-0.5627766807738629 |
77 |
0.0% |
|
0.298310371498215 |
62 |
0.0% |
|
1.3266231068468501 |
60 |
0.0% |
|
2.60935827084169 |
53 |
0.0% |
|
3.51011694221752 |
48 |
0.0% |
|
2.6413512514436 |
45 |
0.0% |
|
1.69843605562986 |
40 |
0.0% |
|
2.58323382235421 |
39 |
0.0% |
|
2.70504105264306 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-113.74330671114599 |
1 |
0.0% |
|
-42.1478983728015 |
1 |
0.0% |
|
-40.4277263001722 |
1 |
0.0% |
|
-35.1821203113785 |
1 |
0.0% |
|
-32.0921290046357 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
29.1621720203733 |
1 |
0.0% |
|
31.457046054914304 |
1 |
0.0% |
|
32.9114617007293 |
1 |
0.0% |
|
34.0993093435765 |
1 |
0.0% |
|
34.8016658766686 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
2.0107e-15 |
Minimum |
-26.161 |
Maximum |
73.302 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-26.161 |
5-th percentile |
-1.4068 |
Q1 |
-0.7683 |
Median |
-0.27419 |
Q3 |
0.39856 |
95-th percentile |
3.1604 |
Maximum |
73.302 |
Range |
99.462 |
Interquartile range |
1.1669 |
Descriptive statistics
Standard deviation |
1.3323 |
Coef of variation |
662600000000000 |
Kurtosis |
42.642 |
Mean |
2.0107e-15 |
MAD |
0.90901 |
Skewness |
1.8266 |
Sum |
4.2439e-1 |
Variance |
1.7749 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-1.01107261632698 |
77 |
0.0% |
|
3.17385642307029 |
77 |
0.0% |
|
-0.953526086363083 |
62 |
0.0% |
|
3.43631244725031 |
60 |
0.0% |
|
3.1426415310887905 |
53 |
0.0% |
|
2.45329922016311 |
48 |
0.0% |
|
2.80808376427436 |
45 |
0.0% |
|
0.528806548957574 |
40 |
0.0% |
|
2.8541019971666097 |
39 |
0.0% |
|
2.7624395847487797 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-26.1605059358433 |
1 |
0.0% |
|
-23.496713929871397 |
1 |
0.0% |
|
-21.9293122885031 |
1 |
0.0% |
|
-21.2487516200394 |
1 |
0.0% |
|
-20.8696261884133 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
21.3930687572539 |
1 |
0.0% |
|
21.550496192579605 |
1 |
0.0% |
|
22.5292984665587 |
1 |
0.0% |
|
23.9178371266367 |
1 |
0.0% |
|
73.3016255459646 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-1.6942e-15 |
Minimum |
-43.557 |
Maximum |
120.59 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-43.557 |
5-th percentile |
-1.4344 |
Q1 |
-0.55408 |
Median |
0.040103 |
Q3 |
0.57044 |
95-th percentile |
1.4076 |
Maximum |
120.59 |
Range |
164.15 |
Interquartile range |
1.1245 |
Descriptive statistics
Standard deviation |
1.2371 |
Coef of variation |
-730170000000000 |
Kurtosis |
405.61 |
Mean |
-1.6942e-15 |
MAD |
0.73785 |
Skewness |
2.5539 |
Sum |
-1.5825e-1 |
Variance |
1.5304 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.43212592398782396 |
77 |
0.0% |
|
0.0149526614685896 |
77 |
0.0% |
|
0.152002545314135 |
62 |
0.0% |
|
-1.14512682747431 |
60 |
0.0% |
|
-0.41688284124123 |
53 |
0.0% |
|
0.220468581007954 |
48 |
0.0% |
|
-0.171626636099457 |
45 |
0.0% |
|
0.33171450239883 |
40 |
0.0% |
|
-0.18754733727697498 |
39 |
0.0% |
|
-0.5349938273164451 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-43.5572415712451 |
1 |
0.0% |
|
-41.5067960832574 |
1 |
0.0% |
|
-37.0603114554112 |
1 |
0.0% |
|
-33.2393281671892 |
1 |
0.0% |
|
-31.76494649021 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
34.3031768568354 |
1 |
0.0% |
|
36.6772679454031 |
1 |
0.0% |
|
36.877368268259794 |
1 |
0.0% |
|
44.054461363163796 |
1 |
0.0% |
|
120.589493945238 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-1.927e-16 |
Minimum |
-73.217 |
Maximum |
20.007 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-73.217 |
5-th percentile |
-0.84215 |
Q1 |
-0.20863 |
Median |
0.022358 |
Q3 |
0.32735 |
95-th percentile |
1.05 |
Maximum |
20.007 |
Range |
93.224 |
Interquartile range |
0.53598 |
Descriptive statistics
Standard deviation |
1.1944 |
Coef of variation |
-6197900000000000 |
Kurtosis |
220.59 |
Mean |
-1.927e-16 |
MAD |
0.50574 |
Skewness |
-8.5219 |
Sum |
3.3538e-11 |
Variance |
1.4265 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.16021086330181197 |
77 |
0.0% |
|
0.7277062007278241 |
77 |
0.0% |
|
-0.207071379659966 |
62 |
0.0% |
|
0.9591472620923409 |
60 |
0.0% |
|
0.7843929483197328 |
53 |
0.0% |
|
0.543376800596399 |
48 |
0.0% |
|
0.683351733616692 |
45 |
0.0% |
|
0.364538761567697 |
40 |
0.0% |
|
0.6851537704418591 |
39 |
0.0% |
|
0.8082500983641501 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-73.21671845526741 |
1 |
0.0% |
|
-50.94336886770229 |
1 |
0.0% |
|
-50.688419356750295 |
1 |
0.0% |
|
-50.420090064434206 |
1 |
0.0% |
|
-41.484822506637705 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
18.709254543323397 |
1 |
0.0% |
|
18.7488719520883 |
1 |
0.0% |
|
19.168327389730102 |
1 |
0.0% |
|
19.5877726234404 |
1 |
0.0% |
|
20.0072083651213 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-3.137e-15 |
Minimum |
-13.434 |
Maximum |
15.595 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-13.434 |
5-th percentile |
-1.7584 |
Q1 |
-0.6431 |
Median |
-0.051429 |
Q3 |
0.59714 |
95-th percentile |
1.7808 |
Maximum |
15.595 |
Range |
29.029 |
Interquartile range |
1.2402 |
Descriptive statistics
Standard deviation |
1.0986 |
Coef of variation |
-350210000000000 |
Kurtosis |
3.7313 |
Mean |
-3.137e-15 |
MAD |
0.81439 |
Skewness |
0.55468 |
Sum |
-6.8538e-1 |
Variance |
1.207 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.17036185217373 |
77 |
0.0% |
|
0.608605870267216 |
77 |
0.0% |
|
0.587335266422761 |
62 |
0.0% |
|
1.67130156362918 |
60 |
0.0% |
|
0.359902378888007 |
53 |
0.0% |
|
-0.10043390489717 |
48 |
0.0% |
|
-0.29796200128389 |
45 |
0.0% |
|
-0.7117979387642629 |
40 |
0.0% |
|
-0.28661406862562394 |
39 |
0.0% |
|
0.6977195955056469 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-13.4340663182301 |
1 |
0.0% |
|
-13.3201546920984 |
1 |
0.0% |
|
-11.1266235224579 |
1 |
0.0% |
|
-10.8425258685569 |
1 |
0.0% |
|
-9.48145633401495 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
10.3261330490616 |
1 |
0.0% |
|
10.348406697766801 |
1 |
0.0% |
|
10.370657984046 |
1 |
0.0% |
|
10.392888824678499 |
1 |
0.0% |
|
15.5949946071278 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.7686e-15 |
Minimum |
-24.588 |
Maximum |
23.745 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-24.588 |
5-th percentile |
-1.3386 |
Q1 |
-0.53543 |
Median |
-0.092917 |
Q3 |
0.45392 |
95-th percentile |
1.5486 |
Maximum |
23.745 |
Range |
48.333 |
Interquartile range |
0.98935 |
Descriptive statistics
Standard deviation |
1.0888 |
Coef of variation |
615650000000000 |
Kurtosis |
31.988 |
Mean |
1.7686e-15 |
MAD |
0.69512 |
Skewness |
1.1871 |
Sum |
6.379e-1 |
Variance |
1.1856 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.0445745893804268 |
77 |
0.0% |
|
-0.0751861699398929 |
77 |
0.0% |
|
-0.362047348389396 |
62 |
0.0% |
|
-1.02294602983554 |
60 |
0.0% |
|
-0.351075101407957 |
53 |
0.0% |
|
-1.01862219976658 |
48 |
0.0% |
|
-0.652096600406493 |
45 |
0.0% |
|
-1.57028828006989 |
40 |
0.0% |
|
-0.5359027354525039 |
39 |
0.0% |
|
-1.09018090617913 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-24.5882624372475 |
1 |
0.0% |
|
-24.403184969972802 |
1 |
0.0% |
|
-23.2282548357516 |
1 |
0.0% |
|
-22.1870885620007 |
4 |
0.0% |
|
-20.949191554361104 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
13.8117577662908 |
1 |
0.0% |
|
15.236028204007098 |
1 |
0.0% |
|
15.2456856915255 |
1 |
0.0% |
|
15.3317415557881 |
1 |
0.0% |
|
23.7451361206545 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
9.1703e-16 |
Minimum |
-4.7975 |
Maximum |
12.019 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-4.7975 |
5-th percentile |
-1.5719 |
Q1 |
-0.76249 |
Median |
-0.032757 |
Q3 |
0.73959 |
95-th percentile |
1.614 |
Maximum |
12.019 |
Range |
16.816 |
Interquartile range |
1.5021 |
Descriptive statistics
Standard deviation |
1.0207 |
Coef of variation |
1113100000000000 |
Kurtosis |
1.6339 |
Mean |
9.1703e-16 |
MAD |
0.83126 |
Skewness |
0.35651 |
Sum |
4.7658e-1 |
Variance |
1.0419 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.35674901847752005 |
77 |
0.0% |
|
0.0635044576008839 |
77 |
0.0% |
|
-0.589598040395407 |
62 |
0.0% |
|
-0.19142297265161498 |
60 |
0.0% |
|
0.329650883701029 |
53 |
0.0% |
|
0.8070381066842709 |
48 |
0.0% |
|
0.418002664896219 |
45 |
0.0% |
|
3.46301782070354 |
40 |
0.0% |
|
0.332848417624034 |
39 |
0.0% |
|
-0.0286089299546822 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-4.79747346479757 |
1 |
0.0% |
|
-4.682930547652759 |
1 |
0.0% |
|
-4.568390246460219 |
1 |
0.0% |
|
-4.45385284150054 |
1 |
0.0% |
|
-4.3393186545773705 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
11.228470279576001 |
1 |
0.0% |
|
11.277920727806698 |
1 |
0.0% |
|
11.6197234753825 |
1 |
0.0% |
|
11.6692047358121 |
1 |
0.0% |
|
12.018913181619899 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-1.8107e-15 |
Minimum |
-18.684 |
Maximum |
7.8484 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-18.684 |
5-th percentile |
-1.9672 |
Q1 |
-0.40557 |
Median |
0.14003 |
Q3 |
0.61824 |
95-th percentile |
1.2431 |
Maximum |
7.8484 |
Range |
26.532 |
Interquartile range |
1.0238 |
Descriptive statistics
Standard deviation |
0.9992 |
Coef of variation |
-551840000000000 |
Kurtosis |
20.242 |
Mean |
-1.8107e-15 |
MAD |
0.70536 |
Skewness |
-2.2784 |
Sum |
-3.5743e-1 |
Variance |
0.9984 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.350563573253678 |
77 |
0.0% |
|
-0.0734595173503765 |
77 |
0.0% |
|
-0.17471205308176502 |
62 |
0.0% |
|
0.6310273414871078 |
60 |
0.0% |
|
0.18350812062465602 |
53 |
0.0% |
|
-0.330547627789277 |
48 |
0.0% |
|
-0.32243692372967503 |
45 |
0.0% |
|
0.5384113631159171 |
40 |
0.0% |
|
-0.26831873850147697 |
39 |
0.0% |
|
0.0736565150203547 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-18.683714633344298 |
1 |
0.0% |
|
-18.553697009645802 |
1 |
0.0% |
|
-18.4311310279993 |
1 |
0.0% |
|
-18.047596570821604 |
1 |
0.0% |
|
-17.7691434633638 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
4.4063382205176 |
1 |
0.0% |
|
4.4729205841361 |
1 |
0.0% |
|
4.57408224145334 |
1 |
0.0% |
|
4.84645240859009 |
1 |
0.0% |
|
7.8483920756445995 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.6934e-15 |
Minimum |
-5.7919 |
Maximum |
7.1269 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-5.7919 |
5-th percentile |
-1.6397 |
Q1 |
-0.64854 |
Median |
-0.013568 |
Q3 |
0.6625 |
95-th percentile |
1.6079 |
Maximum |
7.1269 |
Range |
12.919 |
Interquartile range |
1.311 |
Descriptive statistics
Standard deviation |
0.99527 |
Coef of variation |
587720000000000 |
Kurtosis |
0.1953 |
Mean |
1.6934e-15 |
MAD |
0.7846 |
Skewness |
0.065233 |
Sum |
2.3286e-1 |
Variance |
0.99057 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.141238322200309 |
77 |
0.0% |
|
-0.517759694198053 |
77 |
0.0% |
|
-0.6211270614210049 |
62 |
0.0% |
|
0.0319072703534055 |
60 |
0.0% |
|
-0.27291854500254503 |
53 |
0.0% |
|
-0.5314186516713479 |
48 |
0.0% |
|
-0.143469154599387 |
45 |
0.0% |
|
-0.37809538452842295 |
40 |
0.0% |
|
-0.12761419581231198 |
39 |
0.0% |
|
-0.23845703149556197 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-5.7918812063208405 |
1 |
0.0% |
|
-4.00863979207158 |
1 |
0.0% |
|
-3.9617575357502504 |
1 |
0.0% |
|
-3.8886062856691 |
1 |
0.0% |
|
-3.8811062494802897 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
4.36999837897829 |
1 |
0.0% |
|
4.465413177090861 |
1 |
0.0% |
|
4.46956619153499 |
1 |
0.0% |
|
4.56900895856606 |
1 |
0.0% |
|
7.126882958593759 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.479e-15 |
Minimum |
-19.214 |
Maximum |
10.527 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-19.214 |
5-th percentile |
-1.4394 |
Q1 |
-0.42557 |
Median |
0.050601 |
Q3 |
0.49315 |
95-th percentile |
1.3937 |
Maximum |
10.527 |
Range |
29.741 |
Interquartile range |
0.91872 |
Descriptive statistics
Standard deviation |
0.9586 |
Coef of variation |
648120000000000 |
Kurtosis |
23.879 |
Mean |
1.479e-15 |
MAD |
0.64865 |
Skewness |
-1.9952 |
Sum |
3.4356e-1 |
Variance |
0.91891 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.40696893438373105 |
77 |
0.0% |
|
0.690971618395625 |
77 |
0.0% |
|
-0.7035127839833039 |
62 |
0.0% |
|
-0.0314253812628428 |
60 |
0.0% |
|
-0.597436665174528 |
53 |
0.0% |
|
-2.1814488246367403 |
48 |
0.0% |
|
-1.1545242958661899 |
45 |
0.0% |
|
-3.0454951796322502 |
40 |
0.0% |
|
-0.868299960850499 |
39 |
0.0% |
|
0.215738138536011 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-19.2143254902614 |
1 |
0.0% |
|
-18.8220867423816 |
1 |
0.0% |
|
-18.4937733551053 |
1 |
0.0% |
|
-18.392091495673 |
1 |
0.0% |
|
-18.049997689859396 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
7.518402781245941 |
1 |
0.0% |
|
7.667725750558191 |
1 |
0.0% |
|
7.692208543567821 |
1 |
0.0% |
|
7.754598748054839 |
1 |
0.0% |
|
10.5267660517847 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
3.4823e-15 |
Minimum |
-4.4989 |
Maximum |
8.8777 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-4.4989 |
5-th percentile |
-1.5932 |
Q1 |
-0.58288 |
Median |
0.048072 |
Q3 |
0.64882 |
95-th percentile |
1.3731 |
Maximum |
8.8777 |
Range |
13.377 |
Interquartile range |
1.2317 |
Descriptive statistics
Standard deviation |
0.91532 |
Coef of variation |
262850000000000 |
Kurtosis |
0.28477 |
Mean |
3.4823e-15 |
MAD |
0.72734 |
Skewness |
-0.30842 |
Sum |
1.3993e-09 |
Variance |
0.8378 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
1.2752570390934999 |
77 |
0.0% |
|
1.1241469228868501 |
77 |
0.0% |
|
0.271956610213985 |
62 |
0.0% |
|
1.44662697638966 |
60 |
0.0% |
|
0.5838968102925071 |
53 |
0.0% |
|
0.38872408312047796 |
48 |
0.0% |
|
1.157633713505 |
45 |
0.0% |
|
1.46891114338139 |
40 |
0.0% |
|
1.1285389817093798 |
39 |
0.0% |
|
1.2452765300023998 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-4.49894467676621 |
1 |
0.0% |
|
-4.39130706780494 |
1 |
0.0% |
|
-4.19932124976578 |
1 |
0.0% |
|
-4.19661969463528 |
1 |
0.0% |
|
-4.15253175950472 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
5.685899051594321 |
1 |
0.0% |
|
5.720478632456981 |
1 |
0.0% |
|
5.7845138896294594 |
1 |
0.0% |
|
5.82565431863365 |
1 |
0.0% |
|
8.87774159774277 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.392e-15 |
Minimum |
-14.13 |
Maximum |
17.315 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-14.13 |
5-th percentile |
-1.4917 |
Q1 |
-0.46804 |
Median |
0.066413 |
Q3 |
0.5233 |
95-th percentile |
1.3253 |
Maximum |
17.315 |
Range |
31.445 |
Interquartile range |
0.99133 |
Descriptive statistics
Standard deviation |
0.87625 |
Coef of variation |
629490000000000 |
Kurtosis |
10.419 |
Mean |
1.392e-15 |
MAD |
0.64782 |
Skewness |
-1.101 |
Sum |
4.0946e-1 |
Variance |
0.76782 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.34246975411076896 |
77 |
0.0% |
|
-0.37196212502841897 |
77 |
0.0% |
|
0.318688063430157 |
62 |
0.0% |
|
-0.12182037858308699 |
60 |
0.0% |
|
0.17867583647653199 |
53 |
0.0% |
|
0.23207137768386 |
48 |
0.0% |
|
0.878174917750572 |
45 |
0.0% |
|
-0.0297415143257285 |
40 |
0.0% |
|
0.7865060536879019 |
39 |
0.0% |
|
-0.255230524748655 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-14.1298545174931 |
1 |
0.0% |
|
-13.5632729563133 |
1 |
0.0% |
|
-13.30388757707 |
1 |
0.0% |
|
-13.2568330912778 |
1 |
0.0% |
|
-13.2515419788937 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
6.35185349844491 |
1 |
0.0% |
|
6.44279790144451 |
1 |
0.0% |
|
7.05913181057395 |
1 |
0.0% |
|
8.289889559546191 |
1 |
0.0% |
|
17.315111517627802 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-7.5285e-16 |
Minimum |
-25.163 |
Maximum |
9.2535 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-25.163 |
5-th percentile |
-0.983 |
Q1 |
-0.48375 |
Median |
-0.065676 |
Q3 |
0.39967 |
95-th percentile |
1.2746 |
Maximum |
9.2535 |
Range |
34.416 |
Interquartile range |
0.88342 |
Descriptive statistics
Standard deviation |
0.84934 |
Coef of variation |
-1128200000000000 |
Kurtosis |
94.8 |
Mean |
-7.5285e-16 |
MAD |
0.56387 |
Skewness |
-3.8449 |
Sum |
-1.0823e-1 |
Variance |
0.72137 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.6019568028284449 |
77 |
0.0% |
|
-0.37465644005137605 |
77 |
0.0% |
|
0.549365128729473 |
62 |
0.0% |
|
-0.651405237009102 |
60 |
0.0% |
|
0.47389827829767206 |
53 |
0.0% |
|
2.12502188299054 |
48 |
0.0% |
|
0.536917519702814 |
45 |
0.0% |
|
3.6645884808692504 |
40 |
0.0% |
|
0.31643526103505604 |
39 |
0.0% |
|
-1.07208498526811 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-25.162799369324798 |
1 |
0.0% |
|
-24.019098547590197 |
1 |
0.0% |
|
-23.8156358284126 |
1 |
0.0% |
|
-23.2415971479491 |
1 |
0.0% |
|
-22.8839985767803 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
7.766636362866991 |
1 |
0.0% |
|
7.89339253241379 |
1 |
0.0% |
|
8.538195138626161 |
1 |
0.0% |
|
9.20705853529557 |
1 |
0.0% |
|
9.25352625047285 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
4.3288e-16 |
Minimum |
-9.4987 |
Maximum |
5.0411 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-9.4987 |
5-th percentile |
-1.3581 |
Q1 |
-0.49885 |
Median |
-0.0036363 |
Q3 |
0.50081 |
95-th percentile |
1.3944 |
Maximum |
5.0411 |
Range |
14.54 |
Interquartile range |
0.99966 |
Descriptive statistics
Standard deviation |
0.83818 |
Coef of variation |
1936300000000000 |
Kurtosis |
2.5783 |
Mean |
4.3288e-16 |
MAD |
0.63582 |
Skewness |
-0.25988 |
Sum |
2.7262e-1 |
Variance |
0.70254 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.43899243243668296 |
77 |
0.0% |
|
-0.0526401462570187 |
77 |
0.0% |
|
-0.25778585794493303 |
62 |
0.0% |
|
0.6179704765287819 |
60 |
0.0% |
|
-0.49884979866504103 |
53 |
0.0% |
|
0.40554867355562896 |
48 |
0.0% |
|
0.712873012618197 |
45 |
0.0% |
|
-0.105189588790714 |
40 |
0.0% |
|
0.587856253020328 |
39 |
0.0% |
|
-0.0686980996025901 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-9.498745921046769 |
1 |
0.0% |
|
-9.33519307905321 |
1 |
0.0% |
|
-9.287832213974019 |
1 |
0.0% |
|
-9.264608732956551 |
1 |
0.0% |
|
-9.17055721888169 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
4.19959110679305 |
1 |
0.0% |
|
4.24384121345385 |
1 |
0.0% |
|
4.2956482344645 |
1 |
0.0% |
|
4.71239756635225 |
1 |
0.0% |
|
5.04106918541184 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
9.0497e-16 |
Minimum |
-7.2135 |
Maximum |
5.592 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-7.2135 |
5-th percentile |
-1.3563 |
Q1 |
-0.4563 |
Median |
0.0037348 |
Q3 |
0.45895 |
95-th percentile |
1.2862 |
Maximum |
5.592 |
Range |
12.805 |
Interquartile range |
0.91525 |
Descriptive statistics
Standard deviation |
0.81404 |
Coef of variation |
899520000000000 |
Kurtosis |
1.725 |
Mean |
9.0497e-16 |
MAD |
0.60579 |
Skewness |
0.10919 |
Sum |
2.9615e-1 |
Variance |
0.66266 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.116090785002835 |
77 |
0.0% |
|
-0.33059044844294394 |
77 |
0.0% |
|
0.0162561279842771 |
62 |
0.0% |
|
0.927600044556072 |
60 |
0.0% |
|
-0.14009868476221 |
53 |
0.0% |
|
-0.440929511947803 |
48 |
0.0% |
|
0.00677355522536129 |
45 |
0.0% |
|
-2.0979443214639 |
40 |
0.0% |
|
0.0493500831769145 |
39 |
0.0% |
|
0.255267674459398 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-7.21352743017759 |
1 |
0.0% |
|
-6.93829731768481 |
1 |
0.0% |
|
-4.93273305547833 |
1 |
0.0% |
|
-4.676092279153361 |
1 |
0.0% |
|
-4.619034341772441 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
4.8910624409520995 |
1 |
0.0% |
|
5.2283417900513 |
1 |
0.0% |
|
5.5017472139665 |
1 |
0.0% |
|
5.572113326879691 |
1 |
0.0% |
|
5.59197142733558 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
5.0855e-16 |
Minimum |
-54.498 |
Maximum |
39.421 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-54.498 |
5-th percentile |
-0.55843 |
Q1 |
-0.21172 |
Median |
-0.062481 |
Q3 |
0.13304 |
95-th percentile |
0.83614 |
Maximum |
39.421 |
Range |
93.919 |
Interquartile range |
0.34476 |
Descriptive statistics
Standard deviation |
0.77093 |
Coef of variation |
1515900000000000 |
Kurtosis |
271.02 |
Mean |
5.0855e-16 |
MAD |
0.34191 |
Skewness |
-2.0372 |
Sum |
1.8247e-1 |
Variance |
0.59433 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.18037011855969298 |
77 |
0.0% |
|
-0.132079724302295 |
77 |
0.0% |
|
-0.187420788431655 |
62 |
0.0% |
|
0.0057566554189328704 |
60 |
0.0% |
|
-0.12071403428047302 |
53 |
0.0% |
|
-0.0869893297425326 |
48 |
0.0% |
|
0.0536071193018422 |
45 |
0.0% |
|
-0.167555416292594 |
40 |
0.0% |
|
0.0452174411898587 |
39 |
0.0% |
|
0.0169521541786674 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-54.497720494566 |
1 |
0.0% |
|
-28.009635333749 |
1 |
0.0% |
|
-25.222345240529698 |
1 |
0.0% |
|
-23.646890332167303 |
1 |
0.0% |
|
-23.4201725720228 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
23.649094568125502 |
1 |
0.0% |
|
24.1338941917421 |
1 |
0.0% |
|
26.237390789565897 |
1 |
0.0% |
|
38.1172091261285 |
1 |
0.0% |
|
39.4209042482199 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.5373e-16 |
Minimum |
-34.83 |
Maximum |
27.203 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-34.83 |
5-th percentile |
-0.50467 |
Q1 |
-0.22839 |
Median |
-0.02945 |
Q3 |
0.18638 |
95-th percentile |
0.53787 |
Maximum |
27.203 |
Range |
62.033 |
Interquartile range |
0.41477 |
Descriptive statistics
Standard deviation |
0.73452 |
Coef of variation |
4778000000000000 |
Kurtosis |
207.29 |
Mean |
1.5373e-16 |
MAD |
0.31907 |
Skewness |
3.593 |
Sum |
4.718e-11 |
Variance |
0.53953 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.26258084604117604 |
77 |
0.0% |
|
0.26976495136135703 |
77 |
0.0% |
|
-0.36115803659984497 |
62 |
0.0% |
|
-0.0642082814806287 |
60 |
0.0% |
|
-0.35233380052375 |
53 |
0.0% |
|
-0.0672166613423604 |
48 |
0.0% |
|
-0.20743240447289701 |
45 |
0.0% |
|
-0.0402375927503545 |
40 |
0.0% |
|
-0.191819982814025 |
39 |
0.0% |
|
0.0073428026657956095 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-34.8303821448146 |
1 |
0.0% |
|
-22.889347040939 |
1 |
0.0% |
|
-22.797603905551895 |
1 |
0.0% |
|
-22.7575398590576 |
1 |
0.0% |
|
-22.665684604861497 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
22.5806752741477 |
1 |
0.0% |
|
22.5889894712903 |
1 |
0.0% |
|
22.5995433627945 |
1 |
0.0% |
|
22.614889367616897 |
1 |
0.0% |
|
27.2028391573154 |
6 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
7.9599e-16 |
Minimum |
-10.933 |
Maximum |
10.503 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-10.933 |
5-th percentile |
-1.0819 |
Q1 |
-0.54235 |
Median |
0.0067819 |
Q3 |
0.52855 |
95-th percentile |
1.129 |
Maximum |
10.503 |
Range |
21.436 |
Interquartile range |
1.0709 |
Descriptive statistics
Standard deviation |
0.7257 |
Coef of variation |
911700000000000 |
Kurtosis |
2.833 |
Mean |
7.9599e-16 |
MAD |
0.58421 |
Skewness |
-0.21326 |
Sum |
-9.8112e-11 |
Variance |
0.52664 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.8162637631578471 |
77 |
0.0% |
|
0.8446266467757121 |
77 |
0.0% |
|
-0.984261949244254 |
62 |
0.0% |
|
-0.0805870774450856 |
60 |
0.0% |
|
-0.9969367748280931 |
53 |
0.0% |
|
-0.0726415994946915 |
48 |
0.0% |
|
-0.6924166841818179 |
45 |
0.0% |
|
0.0961715739635631 |
40 |
0.0% |
|
-0.650117795537897 |
39 |
0.0% |
|
0.250885695089417 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-10.933143697655 |
1 |
0.0% |
|
-9.49942296430251 |
1 |
0.0% |
|
-8.88701714094871 |
6 |
0.0% |
|
-8.59364156538624 |
1 |
0.0% |
|
-8.555807930456341 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
7.357255161770509 |
1 |
0.0% |
|
8.27223298396612 |
1 |
0.0% |
|
8.316275438913571 |
1 |
0.0% |
|
8.361985191684349 |
1 |
0.0% |
|
10.5030900899454 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
5.3676e-16 |
Minimum |
-44.808 |
Maximum |
22.528 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-44.808 |
5-th percentile |
-0.47225 |
Q1 |
-0.16185 |
Median |
-0.011193 |
Q3 |
0.14764 |
95-th percentile |
0.48802 |
Maximum |
22.528 |
Range |
67.336 |
Interquartile range |
0.30949 |
Descriptive statistics
Standard deviation |
0.62446 |
Coef of variation |
1163400000000000 |
Kurtosis |
440.09 |
Mean |
5.3676e-16 |
MAD |
0.26194 |
Skewness |
-5.8751 |
Sum |
7.3442e-11 |
Variance |
0.38995 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.14030430201432598 |
77 |
0.0% |
|
0.0206746676928111 |
77 |
0.0% |
|
0.354198094344309 |
62 |
0.0% |
|
-0.0729910792746877 |
60 |
0.0% |
|
0.36348490597863004 |
53 |
0.0% |
|
-0.0365842826760227 |
48 |
0.0% |
|
-0.11859751164434901 |
45 |
0.0% |
|
-0.0925489695836041 |
40 |
0.0% |
|
-0.11406946378171699 |
39 |
0.0% |
|
0.10379660601100901 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-44.807735203791296 |
1 |
0.0% |
|
-36.666000066027 |
1 |
0.0% |
|
-32.828994997462004 |
1 |
0.0% |
|
-30.269720014317002 |
1 |
0.0% |
|
-27.533643285000302 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
19.002941823292698 |
1 |
0.0% |
|
19.228169082574198 |
1 |
0.0% |
|
20.8033440994696 |
1 |
0.0% |
|
22.0835448685737 |
1 |
0.0% |
|
22.5284116897749 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
4.4581e-15 |
Minimum |
-2.8366 |
Maximum |
4.5845 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-2.8366 |
5-th percentile |
-1.1437 |
Q1 |
-0.35459 |
Median |
0.040976 |
Q3 |
0.43953 |
95-th percentile |
0.86636 |
Maximum |
4.5845 |
Range |
7.4212 |
Interquartile range |
0.79411 |
Descriptive statistics
Standard deviation |
0.60565 |
Coef of variation |
135850000000000 |
Kurtosis |
0.61887 |
Mean |
4.4581e-15 |
MAD |
0.46844 |
Skewness |
-0.5525 |
Sum |
1.2736e-09 |
Variance |
0.36681 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.726211883811499 |
77 |
0.0% |
|
0.3578272492998061 |
77 |
0.0% |
|
0.6207093385008 |
62 |
0.0% |
|
1.01813597043583 |
60 |
0.0% |
|
0.6048265697520401 |
53 |
0.0% |
|
0.529692767553245 |
48 |
0.0% |
|
0.8914796678605641 |
45 |
0.0% |
|
-1.34566370602836 |
40 |
0.0% |
|
0.9159355995388021 |
39 |
0.0% |
|
1.00995227965779 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-2.83662691870341 |
1 |
0.0% |
|
-2.82484890293617 |
1 |
0.0% |
|
-2.82268359235889 |
1 |
0.0% |
|
-2.82238396858124 |
1 |
0.0% |
|
-2.81489763570598 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
3.9982936780756897 |
1 |
0.0% |
|
4.014444384730609 |
1 |
0.0% |
|
4.01634181669268 |
1 |
0.0% |
|
4.02286589044732 |
1 |
0.0% |
|
4.58454913689817 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.453e-15 |
Minimum |
-10.295 |
Maximum |
7.5196 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-10.295 |
5-th percentile |
-0.82503 |
Q1 |
-0.31715 |
Median |
0.016594 |
Q3 |
0.35072 |
95-th percentile |
0.7607 |
Maximum |
7.5196 |
Range |
17.815 |
Interquartile range |
0.66786 |
Descriptive statistics
Standard deviation |
0.52128 |
Coef of variation |
358760000000000 |
Kurtosis |
4.2904 |
Mean |
1.453e-15 |
MAD |
0.40326 |
Skewness |
-0.41579 |
Sum |
1.5211e-1 |
Variance |
0.27173 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.18642294572338897 |
77 |
0.0% |
|
0.36662430700491294 |
77 |
0.0% |
|
-0.29713787612847997 |
62 |
0.0% |
|
0.6635747724804879 |
60 |
0.0% |
|
-0.26455958625151 |
53 |
0.0% |
|
0.41468514197751 |
48 |
0.0% |
|
0.7302403643301479 |
45 |
0.0% |
|
0.510304957067478 |
40 |
0.0% |
|
0.7300730401400359 |
39 |
0.0% |
|
0.369398160051982 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-10.2953970749851 |
1 |
0.0% |
|
-8.69662677026752 |
1 |
0.0% |
|
-7.495741104057091 |
1 |
0.0% |
|
-7.0813253463773895 |
1 |
0.0% |
|
-7.02578318190186 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
5.54159759459217 |
1 |
0.0% |
|
5.8261590349735 |
1 |
0.0% |
|
5.8524835709145595 |
1 |
0.0% |
|
6.07085038407798 |
1 |
0.0% |
|
7.51958867870916 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
1.6991e-15 |
Minimum |
-2.6046 |
Maximum |
3.5173 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-2.6046 |
5-th percentile |
-0.69735 |
Q1 |
-0.32698 |
Median |
-0.052139 |
Q3 |
0.24095 |
95-th percentile |
0.92092 |
Maximum |
3.5173 |
Range |
6.1219 |
Interquartile range |
0.56794 |
Descriptive statistics
Standard deviation |
0.48223 |
Coef of variation |
283810000000000 |
Kurtosis |
0.91901 |
Mean |
1.6991e-15 |
MAD |
0.37663 |
Skewness |
0.57669 |
Sum |
4.805e-1 |
Variance |
0.23254 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
-0.39882751495946295 |
77 |
0.0% |
|
0.0965444707905616 |
77 |
0.0% |
|
0.16673563433513197 |
62 |
0.0% |
|
-0.671322844293718 |
60 |
0.0% |
|
0.21967064744260398 |
53 |
0.0% |
|
0.73586965178554 |
48 |
0.0% |
|
0.384013445762976 |
45 |
0.0% |
|
-0.18267352250172897 |
40 |
0.0% |
|
0.38387941757557303 |
39 |
0.0% |
|
0.110373548574965 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-2.60455055280817 |
1 |
0.0% |
|
-2.53432972105675 |
1 |
0.0% |
|
-2.2416202900029503 |
1 |
0.0% |
|
-2.06856086855144 |
1 |
0.0% |
|
-1.8553553377608 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
3.15532747327538 |
1 |
0.0% |
|
3.22017837466898 |
1 |
0.0% |
|
3.41563624349633 |
1 |
0.0% |
|
3.4632456536447997 |
1 |
0.0% |
|
3.5173456116237998 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-3.6602e-16 |
Minimum |
-22.566 |
Maximum |
31.612 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-22.566 |
5-th percentile |
-0.41525 |
Q1 |
-0.07084 |
Median |
0.0013421 |
Q3 |
0.091045 |
95-th percentile |
0.38775 |
Maximum |
31.612 |
Range |
54.178 |
Interquartile range |
0.16188 |
Descriptive statistics
Standard deviation |
0.40363 |
Coef of variation |
-1102800000000000 |
Kurtosis |
244.99 |
Mean |
-3.6602e-16 |
MAD |
0.18147 |
Skewness |
-1.1702 |
Sum |
-1.0442e-1 |
Variance |
0.16292 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.0277351215052822 |
77 |
0.0% |
|
-0.035866315294695 |
77 |
0.0% |
|
-0.0682990099344722 |
62 |
0.0% |
|
0.0968009452278396 |
60 |
0.0% |
|
-0.0392094515896982 |
53 |
0.0% |
|
-0.0582327676516994 |
48 |
0.0% |
|
-0.0284652724675567 |
45 |
0.0% |
|
0.107058302469808 |
40 |
0.0% |
|
-0.0319023040878611 |
39 |
0.0% |
|
-0.0283020664307734 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-22.5656793207827 |
1 |
0.0% |
|
-9.89524404755692 |
1 |
0.0% |
|
-9.845807692778981 |
1 |
0.0% |
|
-9.793567905137511 |
1 |
0.0% |
|
-9.544855375391482 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
10.135597346295699 |
1 |
0.0% |
|
10.507884353083499 |
1 |
0.0% |
|
11.135739844574198 |
1 |
0.0% |
|
12.1524011068287 |
1 |
0.0% |
|
31.612198106136304 |
1 |
0.0% |
|
Distinct count |
275663 |
Unique (%) |
96.8% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
-1.206e-16 |
Minimum |
-15.43 |
Maximum |
33.848 |
Zeros (%) |
0.0% |
Quantile statistics
Minimum |
-15.43 |
5-th percentile |
-0.31784 |
Q1 |
-0.05296 |
Median |
0.011244 |
Q3 |
0.07828 |
95-th percentile |
0.25609 |
Maximum |
33.848 |
Range |
49.278 |
Interquartile range |
0.13124 |
Descriptive statistics
Standard deviation |
0.33008 |
Coef of variation |
-2736900000000000 |
Kurtosis |
933.4 |
Mean |
-1.206e-16 |
MAD |
0.12933 |
Skewness |
11.192 |
Sum |
-3.4758e-11 |
Variance |
0.10895 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
0.0184945729704665 |
77 |
0.0% |
|
-0.0602821510762213 |
77 |
0.0% |
|
-0.0295847028396107 |
62 |
0.0% |
|
0.0286968782920849 |
60 |
0.0% |
|
-0.0427869554036275 |
53 |
0.0% |
|
-0.0266576195050194 |
48 |
0.0% |
|
0.0361233094119335 |
45 |
0.0% |
|
0.0718180029478637 |
40 |
0.0% |
|
0.0298493414012052 |
39 |
0.0% |
|
-0.0203586378568534 |
36 |
0.0% |
|
Other values (275653) |
284270 |
99.8% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
-15.430083905534898 |
1 |
0.0% |
|
-11.710895639451499 |
1 |
0.0% |
|
-9.617915452382391 |
1 |
0.0% |
|
-8.65656990038166 |
1 |
0.0% |
|
-8.47868564330279 |
1 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
15.870474054688598 |
1 |
0.0% |
|
15.942150981273501 |
1 |
0.0% |
|
16.1296091387323 |
1 |
0.0% |
|
22.620072218580297 |
1 |
0.0% |
|
33.8478078188831 |
1 |
0.0% |
|
Distinct count |
32767 |
Unique (%) |
11.5% |
Missing (%) |
0.0% |
Missing (n) |
0 |
Infinite (%) |
0.0% |
Infinite (n) |
0 |
Mean |
88.35 |
Minimum |
0 |
Maximum |
25691 |
Zeros (%) |
0.6% |
Quantile statistics
Minimum |
0 |
5-th percentile |
0.92 |
Q1 |
5.6 |
Median |
22 |
Q3 |
77.165 |
95-th percentile |
365 |
Maximum |
25691 |
Range |
25691 |
Interquartile range |
71.565 |
Descriptive statistics
Standard deviation |
250.12 |
Coef of variation |
2.831 |
Kurtosis |
845.09 |
Mean |
88.35 |
MAD |
103.53 |
Skewness |
16.978 |
Sum |
25163000 |
Variance |
62560 |
Memory size |
2.2 MiB |
Value |
Count |
Frequency (%) |
|
1.0 |
13688 |
4.8% |
|
1.98 |
6044 |
2.1% |
|
0.89 |
4872 |
1.7% |
|
9.99 |
4747 |
1.7% |
|
15.0 |
3280 |
1.2% |
|
0.76 |
2998 |
1.1% |
|
10.0 |
2950 |
1.0% |
|
1.29 |
2892 |
1.0% |
|
1.79 |
2623 |
0.9% |
|
0.99 |
2304 |
0.8% |
|
Other values (32757) |
238409 |
83.7% |
|
Minimum 5 values
Value |
Count |
Frequency (%) |
|
0.0 |
1825 |
0.6% |
|
0.01 |
718 |
0.3% |
|
0.02 |
85 |
0.0% |
|
0.03 |
3 |
0.0% |
|
0.04 |
11 |
0.0% |
|
Maximum 5 values
Value |
Count |
Frequency (%) |
|
11898.09 |
1 |
0.0% |
|
12910.93 |
1 |
0.0% |
|
18910.0 |
1 |
0.0% |
|
19656.53 |
1 |
0.0% |
|
25691.16 |
1 |
0.0% |
|
Distinct count |
2 |
Unique (%) |
0.0% |
Missing (%) |
0.0% |
Missing (n) |
0 |